18.100A PROBLEM SET 6

due May 3rd 9:30 am
You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. $f(x)$ and $g(x)$ are integrable on $[a, b]$, and $g(x)$ is bounded below by a positive constant $c>0$. Prove that $\frac{f(x)}{g(x)}$ is integrable.
Problem 2. Find some functions $f(x)$ and $g(x)$ satisfying the hypothesis in the Problem 1 but violating the following identity

$$
\int_{a}^{b} \frac{f(x)}{g(x)} d x=\frac{\int_{a}^{b} f(x) d x}{\int_{a}^{b} g(x) d x}
$$

Problem 3. Exercise 19.3.1. Page 263.
Problem 4. Exercise 19.4.4. Page 264.
Problem 5. Exercise 21.1.3.(a) Page 299.
Problem 6 (20 points). Exercise 21.2.1.(a)(e)(f)(h) Page 300.
Problem 7. Exercise 21.2.5. Page 300.
Problem 8. Exercise 21.2.6. Page 300.
Problem 9. Assume f is continuous on (0,1). Prove that if $\int_{0^{+}}^{1^{-}}|f(x)|^{p} d x$ converges for some $p>1$, then $\int_{0^{+}}^{1^{-}} f(x) d x$ converges.
(Hint: Use Young's inequality for products given in a supplementary note.)
Problem 10. Exercise 21.4.3. Page 301.
Problem 11. Problem 21-3 Page 301.

